

Turn your python code into architectural views

Codoc is the first Continuous Documentation tool.
It provides a revolutionary graph based interface,
that gives a powerful overview of any software system.

For more information about codoc, please visit our website [https://codoc.org/?utm_source=readthedocs&utm_medium=post&utm_campaign=info].

Codocpy is used to publish your graphical documentation & architectural views from a command-line
or CI solution, by writing simple Python scripts.

Warning

Codoc is still very early beta, and incomplete.
We are currently looking for beta testers [https://codoc.org/signup/?utm_source=readthedocs&utm_medium=post&utm_campaign=betatest].

A quick example

@view(
 label="Module View",
)
def view_modules(graph):
 """
 This view contains all the modules that our system contain.
 """
 return filters.exclude_classes(graph)

Features

	Always-up-to-date architectural views

	A simple framework integrated in your favorite language

	Variety of filters to show only the relevant information

	Historical information about prior views

	COMING SOON See graphical representation of test coverage, contributors etc.

	COMING SOON Get live monitoring data on your views

	COMING SOON Comments and dialogue about views.

	COMING SOON A git bot that provide context for pull requests

	COMING SOON A variety of export possibilities

	COMING SOON Sphinx, Confluence, GitBook (and other) integrations

Content

	Getting started
	Install codoc-python

	Create a config

	Your first view function

	Publishing your view

	Your second view function

	Examples of view functions
	Top level modules view

	Domain Model

	Django models

	Clean Django module diagram

	Reference guides
	Filters
	list of all filters

	Customization

	Views
	View Functions

	Configuration
	file

	Setup

	Domain
	Domain Model

	Frequently Asked Questions
	How does codocpy work?

	Dangerous side effects!
	Not this

	It crashed!

	Is it secure?

Bugs/Requests

Please use the GitHub issue tracker [https://github.com/svadilfare/codoc-python/issues] to submit bugs or request features.

Indices and tables

	Index

	Module Index

	Search Page

Getting started

This guide will go through setting up Codoc with Python, creating a config and a
few simple architectural views with the supplied framework. Finally you will
publish them, and see the diagrams of your system. Very neat!

Don’t know what views are? A view, or architectural view is, according to
opengroup.org [https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html] is:

Architecture views are representations of the overall architecture that are
meaningful to one or more stakeholders in the system. The architect chooses
and develops a set of views that will enable the architecture to be
communicated to, and understood by, all the stakeholders, and enable them to
verify that the system will address their concerns.

We have an indepth motivation and explanation on https://codoc.org - it also has examples!

codocpy requires: Python 3.6, 3.7, 3.8, 3.9.

Install codoc-python

	Install the package by running:

pip install codoc-python

	Check that it’s installed correctly:

$ codocpy

Create a config

Everything Codoc related should be located inside a folder
called codoc_views located at the root directory of your project.

Start by creating a configuration file:

You will also need a basic config file in the same folder, called config.py.
This file mainly needs a function called setup to return a
graph of the system in question. The function takes **kwargs, to pass along
any flags. The example below returns a graph containing the myproject
module, and it’s direct dependencies - please replace myproject with the
module you want to document:

Warning

Using django? Please see Django to bootstrap that correctly.
Please see Multiple modules if your code exposes multiple packages.

codoc_views/config.py
from codoc import new_graph

import myproject

def setup(**kwargs):
 return new_graph(myproject, **kwargs)

Your first view function

You’ll be creating what we call a view function now. This is a function that
takes, as input, a graph that details the whole python codebase, and as output
returns a new graph. This makes it possible for you to

Inside the codoc_views folder, create a new python file, the name of which can be anything
you choose. This file will include your first view function, which generates a view
of the modules of your system.

codoc_views/module_views.py
from codoc import filters, view
@view(
 label="Module View",
)
def modules(graph):
 """
 This view contains all the modules that your project contains.
 """
 return filters.include_only_modules(graph)

You can verify that codoc can find your views:

$ codocpy list_views
- module_views.modules

Warning

Please make sure you are in the root directory of the project.

This should be your filename appended with the name of each view function.

Publishing your view

Warning

Codoc will load all your code, and by effect execute all
side-effects! Make sure you don’t have files that execute critical
code on import! see Dangerous side effects! for more info.

By now we hope you are already signed up [https://codoc.org/signup/?utm_source=readthedocs&utm_medium=post&utm_campaign=info]
and a registered user.

You’ll have to fetch the API key for the project you are currently working on.

Go to your codoc project [https://codoc.org/app/org/?utm_source=readthedocs&utm_medium=post&utm_campaign=info]
and scroll to the bottom and fetch your API key of choice.

This has to be set as an environmental variable called CODOC_API_KEY. One
way of doing is simply by writing:

$ export CODOC_API_KEY=f5f9c07f4ce96aeee3aeb32faf35c0e821b8c831

You can now publish your views:

$ codocpy publish
Publishing Module View...
published at https://codoc.org/app/view/181

Note

Did it failed? Codoc is a bit sensitive, sadly. Read It crashed!
for what to do.

Your view is now published, and you can view it at the URL shown in your console
(in our example https://codoc.org/app/graph/181) which offers a public example
from our sample project [https://github.com/svadilfare/codoc-python-example]

Your second view function

This prior view might be very verbose, depending on the system you have.
It also shows all external dependencies too, which might not be ideal.

If you feel confident and want to play around, you can look at
either Examples of view functions for examples of views we created or Filters for a
complete lists of possible views.

Otherwise read on! We will go into how you can use these filters for more
complex needs.

As mentioned, filters are simply functions that remove nodes from your graph,
however by combining them one can express rather complex needs.

For instance by chaining them (i.e using one on the result of another) one can
use the possibilities of both. The following examples uses a
depth_based_filter to only get the top modules and any direct content of those.

Any important thing to note is that the function has a different name. Otherwise
one would override the other.

codoc_views/module_views.py
from codoc import filters, view

@view(
 label="Top level Module View",
)
def top_level_modules(graph):
 """
 This view contains all the modules that your project contains.
 """
 graph = filters.include_only_modules(graph)
 # we only want the outer most modules and their direct content
 depth_based_filter = filters.get_depth_based_filter(2)
 return depth_based_filter(graph)

If you run codocpy publish again, you’ll see two views being generated, and
if you click on the new one, you’ll see a simpler graph.

Another great filter is the get_children_of, which makes the graph “zoom in”
on a subsection (subgraph) of the graph/system. So if you are analyzing a
project called myproject but only want to view the content of a submodule,
i.e myproject.submodule the following view would help:

codoc_views/module_views.py
from codoc import filters, view
import myproject.submodule

@view(
 label="Content of Submodule",
)
def content_of_submodule(graph):
 return filters.get_children_of(myproject.submodule)(graph)

You could also use the | (OR) operator to get the union of two graphs, i.e
both modules AND classes. We increase depth here, to make sure we get more
content.

codoc_views/module_views.py
from codoc import filters, view
import myproject.submodule

@view(
 label="Classes & Module View",
)
def modules_and_classes(graph):
 graph = (
 filters.include_only_modules(graph)
 | filters.include_only_classes(graph)
)
 return filters.get_children_of(myproject.submodule)(graph)

Want more? There are a bunch of examples and reference documentation etc that
you can consult. I hope it made sense - otherwise please contact us.

See also

	Examples of view functions

	How does codocpy work?

	Filters

	Views

	Configuration

Examples of view functions

This file contains examples of different views, explain what they do and why you
might want them. They are merely examples and might need tweaking to work within
your project

Top level modules view

This view shows all the top level modules and their direct descendants (content).

codoc_views/module_views.py
from codoc import filters, view

@view(
 label="Top level Module View",
)
def top_level_modules(graph):
 """
 This view contains all the modules that your project contains.
 """
 graph = filters.include_only_modules(graph)
 # we only want the outer most modules and their direct content
 depth_based_filter = filters.get_depth_based_filter(2)
 return depth_based_filter(graph)

Domain Model

Model diagram, class diagram or something else. People call it different
things.

To quote Cosmic Python [https://www.cosmicpython.com/book/chapter_01_domain_model.html#_what_is_a_domain_model],
a highly recommended book:

The domain is a fancy way of saying the problem you’re trying to solve. Your
authors currently work for an online retailer of furniture. Depending on
which system you’re talking about, the domain might be purchasing and
procurement, or product design, or logistics and delivery. Most programmers
spend their days trying to improve or automate business processes; the
domain is the set of activities that those processes support.

The following view function will show all the classes of your domain model,
given that it’s defined in myproject.domain.

from codoc import filters, view

import myproject

@view(
 label="Domain model (Classes)",
)
def domain_model(graph):
 graph = filters.get_children_of(myproject.domain, keep_external_nodes=False)(graph)

 return filters.include_only_classes(graph)

Django models

In django you define your dataclasses by inheriting the Model class.
Our filters currently do not support filtering based on inheritance, however by
concatinating

from codoc import filters, view

import accounts.models
import billing.models

@view(
 label="Domain Model (API)",
)
def all_models(graph):
 graph = filters.include_only_classes(graph) | filters.include_only_modules(graph)

 return (
 filters.get_children_of(accounts.models)(graph)
 | filters.get_children_of(billing.models)(graph)
)

Clean Django module diagram

Django includes a few files that you might not be that interested in, like the
migrations file or tests of each app. We personally like to get a bit
cleaner diagrams. We also don’t always need external dependencies.
The following custom made filter can help you here, and is
utilized in the below example:

from codoc import view, filters

import accounts, billing

@view(
 label="Internal modules",
)
def internal_modules(graph):
 return remove_django_bloat(
 remove_external_nodes(
 filters.include_only_modules(graph)
)
)

def remove_external_nodes(graph):
 return (
 filters.get_children_of(accounts)(graph)
 filters.get_children_of(accounts)(graph)
 | filters.get_children_of(billing)(graph)
)

def remove_django_bloat(graph):
 graph = filters.exclude_by_regex(r".migration")(graph)
 graph = filters.exclude_by_regex(r".test")(graph)
 graph = filters.exclude_by_regex(r".apps")(graph)
 graph = filters.exclude_by_regex(r".snapshots")(graph)

 return graph

See also

	Filters

	How does codocpy work?

Reference guides

Here we provide a complete list of the API features that can be used when
writing views for Codoc.

	Filters
	list of all filters

	Customization

	Views
	View Functions
	Advanced Usage

	Configuration
	file

	Setup
	Prepping your environment

	Python dotenv

	Multiple modules

	Django

	Domain
	Domain Model
	Graph

	Node

	Dependency

Filters

list of all filters

Filters can be used to filter a graph.

This is used to create a more special and specific view, making it more
viewer friendly.

	
exclude_classes(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that doesn’t have any classes

	
exclude_functions(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that doesn’t have any functions

	
exclude_modules(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that doesn’t have any modules

	
exclude_exceptions(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that doesn’t have any exceptions

	
include_only_classes(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that only has classes

	
include_only_functions(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that only has functions

	
include_only_modules(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that only has modules

	
include_only_exceptions(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	Returns a graph that only has exceptions

	
content_of(node: Union[str, object, codoc.domain.model.Node], keep_external_nodes: bool = False, keep_parents: bool = False) → Callable[[codoc.domain.model.Graph], codoc.domain.model.Graph]

	
	Parameters

	
	node – The node, object or string identifier of what to filter based on

	keep_external_nodes – Whether to keep external dependencies of children

	Returns

	A filter function that excludes non-children

	Return type

	GraphFilter

Returns a filter that only returns children of the node given via the identifier.

The returned filter (function) can then be called with a given graph.

Important: Children are NOT dependencies, they are things defined inside
the current node. I.e if a class, Foo, defined in FooModule, then FooModule
is the parent of Foo.

Example that returns all modules/classes/exceptions/functions defined
inside myproject.subproject.
.. code-block:: python

filter_function = filters.content_of(myproject.subproject)

filtered_graph = filter_function(graph)

	
get_depth_based_filter(depth: int) → Callable[[codoc.domain.model.Graph], codoc.domain.model.Graph]

	

	
class_diagram_filter(graph: codoc.domain.model.Graph) → codoc.domain.model.Graph

	
	Parameters

	graph – Graph to filter

	Returns

	A graph that only contains classes and methods (functions inside classes)

The Class Diagram filter is useful if you want a traditional class diagram,
as it will remove all functions
(which aren’t inside classes - functions inside classes, are often called methods).

	
filter_by_regex(pattern: str, flags=0) → Callable[[codoc.domain.model.Graph], codoc.domain.model.Graph]

	This allows you to filter nodes based on whether they fulfill
some regex query. This is ideal if you, for instance, want to remove all
test related things.

The regex is done solely on the name attribute.

The following example removes all instances that don’t include “test”.
Example:

graph = filters.filter_by_regex("test", flags=re.IGNORECASE)(graph)

To understand how to use regex, please consult the python documentation:

https://docs.python.org/3/library/re.html

	
exclude_by_regex(pattern: str, flags=0) → Callable[[codoc.domain.model.Graph], codoc.domain.model.Graph]

	This allows you to filter nodes based on whether they fulfill
some regex query. This is ideal if you, for instance, want to remove all
test related things.

The regex is done solely on the name attribute.

The following example removes all instances with a name that contains “test”.
Example:

graph = filters.exclude_by_regex("test", flags=re.IGNORECASE)(graph)

To understand how to use regex, please consult the python documentation:

https://docs.python.org/3/library/re.html

Customization

Filters are, from a implementation perspective, simply a function that
takes a graph and returns a new graph, making it very easy to implement custom
filters.

An example where one creates a filter that removes all edges:

def remove_edges(graph):
 return Graph(
 nodes=graph.nodes,
 edges=set()
)

We recommend you put all your custom filters in your codoc_views folder, in a
file called custom_filters or similar, however this is completly optional.

Views

A view is a graph with a label and a description, which can be viewed in our
web app [https://codoc.org/app/?utm_source=readthedocs&utm_medium=post&utm_campaign=info]

They can compared to Architectural
views [https://www.sciencedirect.com/topics/computer-science/architecture-view],
however we aim to make them interactive and contain more and better information.

The cool thing about having architectural views in your CI pipeline, is that you
have historical information, and that they are constantly up to date.

This is what you can use the
codoc app [https://codoc.org/app/?utm_source=readthedocs&utm_medium=post&utm_campaign=info]
for. You can see all prior versions, and how your system evolves from a
structural perspective. It’s super cool in our humble opinion.

In our framework, we define a view as consisting of:

	A graph

	A label

	A unique id

	A project that (which owns the view)

	An optional commit hash

View Functions

Views functions are functions that are used to generate views.

They should reside in files prefixed with views_ and reside inside
a codoc_views folder in your root directory.

A simple example can be found in Your first view function.

A view is simply a function that takes a graph as input and returns the graph
that you want to view. Here you add a label and a description and any related
data that is relevant to you. The label is supplied in the view decorator, and
the description is simply the docstring of the view function.

The label you supply to the decorator is the one that will be visualized on the webapp.

Advanced Usage

By default the view

Dynamic Descriptions

The view function can also take a string as input if you want a dynamic
description, i.e based on the docstring of something else. This can make
documentation more DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself]:

from codoc.service import filters
from codoc.service.export import view
from codoc.service.parsing.node import get_description

import myproject

@view(
 label="Module View",
 description=get_description(myproject)
)
def view_modules(graph):
 return filters.exclude_functions(filters.exclude_classes(graph)

Custom ID

The way we identify whether two views are the same, but different versions, is
by using a unique graph_id. We generate this based on the function and file
name, which is a combination we hope is unique. You can, however, set this
yourself, if you have concrete reasons for it. Don’t do this if you don’t know
what you are doing, because it my create collisions, and make your documentation unusable.

from codoc.service import filters
from codoc.service.export import view

import myproject

@view(
 label="Module View",
 graph_id="my_very_long_and_unique_id"
)
def view_modules(graph):
 return filters.exclude_functions(filters.exclude_classes(graph)

Configuration

Some times you want more control of your view generation - maybe you want to
apply a filter on all views for what ever reason, or maybe you want to add
annotations to each graph.

This is all possible in the configuration file.

file

The file needs to be located in your codoc_views folder and be called
codoconf.py.
The cool thing is that it is an executable python file, making it easy to write
custom setup functions based on your environment.

Setup

The graph given to each view function is generated with the setup
function.

One can utilize the simple version in Publishing your view, however more advanced
versions could be by utilizing Filters, i.e:

codoc_views/config.py
from codoc import new_graph, filters

import myproject

def setup(**kwargs):
 graph = new_graph(myproject)
 return filters.exclude_functions(graph, **kwargs)

However the function exposes a variety of other possibilities too.

Prepping your environment

One neat reason to use the Setup function, is that you can use it to
prepare your environment. If you are using a framework of sorts, there might be
a need to bootstrap your code before it can run.

Python dotenv

We personally like python-dotenv [https://pypi.org/project/python-dotenv/],
and it can easily be used for, for instance, your CODOC API key. Simply add it like so:

codoc_views/config.py
from codoc import new_graph
from dotenv import load_dotenv

import myproject

def setup(**kwargs):
 load_dotenv()
 return new_graph(myproject, **kwargs)

Multiple modules

Some Python codebases exposes multiple packages. If this is the case, then you
need to generate graphs for all of these too. Luckily you can use a variety of
binary operators to group graphs together. Using the OR (|) operation you
can get nodes that exist in either of two graphs. The following configuration
file does precisely this to include tests as well as dependencies of the views themselves:

codoc_views/config.py
from codoc import new_graph

import myproject, tests, codoc_views

def setup(**kwargs):
 return (
 new_graph(sample, **kwargs)
 | new_graph(tests, **kwargs)
 | new_graph(codoc_views, **kwargs)
)

Django

Django needs you to bootstrap and import settings prior to importing any
modules.

The following configuration does this, and creates a graph for two different
django apps (Which is what they name their modules). Replace app_one and
app_two with the modules of your system, and add more if applicable.

codoc_views/config.py
from codoc import new_graph
import os

def setup(**kwargs):
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "codoc_api.settings")
 import django
 django.setup()

 import app_one, app_two
 return (
 new_graph(app_one, **kwargs) |
 new_graph(app_two, **kwargs)
)

Domain

Domain Model

The domain model is a conceptual model of the domain that incorporates both behavior and data.

We use it to define the core data classes that are used throughout the project.

Graph

	
class Graph(edges: Set[codoc.domain.model.Dependency], nodes: Set[codoc.domain.model.Node])

	A Graph is the base element of the system.
It contains both edges (Dependencies) as well as nodes (classes, functions, etc).

It supports a variety of operators.

	
edges: Set[codoc.domain.model.Dependency]

	

	
nodes: Set[codoc.domain.model.Node]

	

Node

	
class Node(identifier: str, name: str, of_type: codoc.domain.model.NodeType, path: Optional[str], args: Optional[Tuple[str, …]], lines: Optional[Tuple[int, int]], external: bool = True, description: Optional[str] = None, parent_identifier: Optional[str] = None)

	Nodes represents a given source code item,
i.e a class, function or module.

It contains all the meta data as well as the code that
defined the node in question.

Node Type

	
class NodeType(value)

	An enumeration.

Dependency

	
class Dependency(from_node: str, to_node: str)

	A Dependency shows that one node depends on another.
Currently it doesn’t specify the type of dependency.

Frequently Asked Questions

How does codocpy work?

You might be wondering how it all works.

codocpy utilizes Dynamic Analysis [https://totalview.io/blog/what-dynamic-analysis#what] to examine your code.

This is done because we get a greater insight into exactly how and what your
system does in the current environment with the external dependencies you have.
This provides a few cool features, one of which making it easy to fully
understand all dependencies, but also understand code with unexpected side
effects.
In the future, it will also make it possible to include information regarding
the path your code takes when running tests.

Dangerous side effects!

Codocpy relies on dynamic analysis (see How does codocpy work?), which is both
good and bad. We strongly advise that you don’t have any production api keys or
anything set up, in the environment you run codoc in. Codoc is much like
automated tests. If your automated tests execute code that sends emails, then codoc might
do it too. It’s a bit different, but codoc will import all your files into
memory, and if your code is written improperly, then that means side effects.

This can happen if codocpy imports a file that doesn’t
define a __main__ function [https://realpython.com/python-main-function/] correctly, and then
either exits or something similar. Essentially, if you have a python file
that executes python code on import, then don’t run codoc. Rewrite your code.
It’s bad practice.

TL;DR
Do this
~~~~~~~~~~~~~~~~~~~~~~~

# scripts/myfile.py
if __name__ == "__main__":
    users = get_users()
    for user in users
        send_spam_email(user)






Not this


Warning

DONT DO THE FOLLOWING



# scripts/myfile.py
users = get_users()
for user in users
    send_spam_email(user)










It crashed!

This might be due to the quality of your code, and I mean that in the nicest way
possible.

Codocpy relies on dynamic analysis (see How does codocpy work?), which means
that if your code crashes, then codoc crashes. There can be a bunch of different
reasons. We recommend you read Prepping your environment and make sure it is set up correctly.

You can run codocpy with the raise_errors for more information if the error
message isn’t helpful. (codocpy publish --raise_errors).

Another possible problem is side-effects in your codebase. See Dangerous side effects!.

If you have circular dependencies, that will make codocpy crash some times, due to python crashing.

If you are using Django, then it might be due to a known bug [https://github.com/svadilfare/codoc-python/issues/4] with admin.py.

We try our best at providing meaningful messages, where possible, however, it
might be difficult at times. Codoc is a sensitive framework, but it will help
you forever if you treat it right.




Is it secure?

You might fear losing your data. You shouldn’t! Codoc doesn’t access data and
only reads your source code. It also only exports what you want, and you can
always delete your data again. We, however, do not currently offer any
self-hosted solutions, so if you want total control over your data, you are out
of luck. Please contact us, if this is a big issue for you, and we might be able
to help, and/or prioritize it higher.







            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       codoc	
       

     
       	
       	   
       codoc.domain	
       

     
       	
       	   
       codoc.domain.model	
       

     
       	
       	   
       codoc.service.filters	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 


C


  	
      	class_diagram_filter() (in module codoc.service.filters)


      	
    codoc.domain

      
        	module


      


      	
    codoc.domain.model

      
        	module


      


  

  	
      	
    codoc.service.filters

      
        	module


      


      	content_of() (in module codoc.service.filters)


  





D


  	
      	Dependency (class in codoc.domain.model)


  





E


  	
      	edges (Graph attribute)


      	exclude_by_regex() (in module codoc.service.filters)


      	exclude_classes() (in module codoc.service.filters)


  

  	
      	exclude_exceptions() (in module codoc.service.filters)


      	exclude_functions() (in module codoc.service.filters)


      	exclude_modules() (in module codoc.service.filters)


  





F


  	
      	filter_by_regex() (in module codoc.service.filters)


  





G


  	
      	get_depth_based_filter() (in module codoc.service.filters)


  

  	
      	Graph (class in codoc.domain.model)


  





I


  	
      	include_only_classes() (in module codoc.service.filters)


      	include_only_exceptions() (in module codoc.service.filters)


  

  	
      	include_only_functions() (in module codoc.service.filters)


      	include_only_modules() (in module codoc.service.filters)


  





M


  	
      	
    module

      
        	codoc.domain


        	codoc.domain.model


        	codoc.service.filters


      


  





N


  	
      	Node (class in codoc.domain.model)


  

  	
      	nodes (Graph attribute)


      	NodeType (class in codoc.domain.model)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Turn your python code into architectural views
        


        		
          Getting started
          
            		
              Install codoc-python
            


            		
              Create a config
            


            		
              Your first view function
            


            		
              Publishing your view
            


            		
              Your second view function
            


          


        


        		
          Examples of view functions
          
            		
              Top level modules view
            


            		
              Domain Model
            


            		
              Django models
            


            		
              Clean Django module diagram
            


          


        


        		
          Reference guides
          
            		
              Filters
              
                		
                  list of all filters
                


                		
                  Customization
                


              


            


            		
              Views
              
                		
                  View Functions
                


              


            


            		
              Configuration
              
                		
                  file
                


                		
                  Setup
                


              


            


            		
              Domain
              
                		
                  Domain Model
                


              


            


          


        


        		
          Frequently Asked Questions
          
            		
              How does codocpy work?
            


            		
              Dangerous side effects!
              
                		
                  Not this
                


              


            


            		
              It crashed!
            


            		
              Is it secure?
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





